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1 Purpose of the STSM

The purpose of the STSM was to address two research directions that are important for the ana-
lysis of an algorithm (SAPEO) that my co-authors Günter Rudolph, Boris Naujoks and I recently
proposed. The algorithm originally intended for application in game balancing was published
and accepted as both a single- as well as a multi-objective optimisation algorithm [1, 2].

However, in benchmarks1 the algorithm did not perform as well as expected. During the
STSM, we therefore wanted to find an explanation for this behaviour by identifying theoretical
performance limits.

2 Work carried out and main results

At the start of the STSM, I reviewed three methods for stochastic convergence analysis suggested
by my host and investigated their applicability. Starting from there, we set out to find theoretical
bounds for different metrics in order to eventually find limits for the progress rate of SAPEO.

SAPEO is based on the observation that ranking solutions based on the prediction of a surrogate-
model is possible without actual evaluation if you allow for a certain risk of ranking errors, i.e.
individuals that are sorted into a wrong order. In [2] we already gave some approximation of the
risk accepted by applying several different dominance relations we suggested. However, in the
paper we were assuming independence of the error distributions of the surrogate model. More
precise bounds can be found by taking the correlation assumption into account that is inherent to
the Gaussian process model (Kriging). During the STSM, we were able to achieve a more general
formulation of the probability that can be used given a general positive definite covariance mat-
rix. We were able to identify theoretical upper and lower bounds for the probability of ranking
errors for a (1+1)-EA and to verify them empirically. We were also able to transfer the concept to
larger populations. A summary of the work can be found in appendix A. However, these are just
preliminary results and require thorough checks before publication.

The second approach we tried during the STSM was to formalise SAPEO performance as a
Markov process as done in standard convergence analysis. However, the surrogate models used
in SAPEO are local and learned based on the neighbours of the point to predict. The samples that
are selected for the learning process are the k-nearest neighbours from the archive of evaluated
points. However, because of the growing archive the Markovian kernel would not be bounded in
size. It was then investigated whether convergence bounds can be obtained making the assump-
tion of a bounded size archive and, instead of the statistically involved Gaussian process model,
assuming a linear Lipschitz model. We were able to come up with a theoretical argument of why

1BBOB single- and bi-objective http://coco.gforge.inria.fr/
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restricting the archive to a size of 1 or even doing a worst-case analysis with a larger archive is
not possible. This is because with the Lipschitz model we used for analysis, the individuals in
a population are never distinguishable just based on model predictions in these cases. We thus
switched to a different worst-case analysis: assuming a constant (worst-case) uncertainty for all
predictions. With this approach, we were able to find theoretical bounds for the probability of
acceptance, rejection and evaluation that are all necessary for a Markov formulation. We were
also able to verify the results empirically. A draft of the results can be found in appendix B. The
plan here is to identify an asymptotic bound for the uncertainty threshold experimentally (based
on the results obtained from running the BBOB benchmarks). With this input, a better, more
praxis-related approximation of the probabilities addressed should be possible.

What is still missing is the complete formalisation of the Markov process since we were not
able to find the correct limits for the progress rate yet. However, we have three promising ap-
proaches based on the probabilities we computed before. But since we have no empirically verifi-
able results yet, these are not included in this report.

During the STSM and because of the discussion we had, we also were able to develop a
new dominance relation that could be used for SAPEO. This would be based on a controllable
threshold for the probability of ranking errors, and it could replace the assumption that the true
function value is inside a given interval. We intend to test this approach in the future on the
same BBOB benchmarks.

3 Future collaboration and publications

Future collaboration and publications are definitely planned. One publication is intended to be on
a benchmark of the new dominance relation for SAPEO. Additionally, once the remaining issues
regarding the progress rate are fixed, we also intend to do and publish a complete convergence
analysis on SAPEO.

Additionally, with the obtained results there were also some insights into possible shortcom-
ings of SAPEO in terms of the adaptation of the uncertainty threshold that could potentially
allow negative progress rate. This issue we will definitely investigate further both empirically as
well as theoretically. We were thus able to develop useful rules for a practical application guided
by theoretical insights.
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A Probability of Ranking Errors under Different Strategies

A.1 General Approach

Let iX , iY be individuals in a population with predicted values µX ,µY and uncertainties σX ,σY ,
respectively. We now want to compute the probability that different ranking strategies sorted the
individuals correctly. More formally, we compute P(iX ≥ f iY ) given a certain ranking by one of
the other dominance relations.

Since all of the dominance relations trust the prediction of the surrogate model, we will as-
sume (Assumption 1) that the error distributions are estimated correctly.

Now, let X ,Y be random variables distributed according to the prediction of a surrogate model
with X ∼ N(µx,σ2

X ) and Y ∼ N(µY ,σ2
Y ). We can now express the probability we are looking for in

terms of random variables, namely P(iX ≥ f iY )= P(X ≤Y )

Given Assumption 1, what is the probability that X ≤Y ? We can express the probability as in
equation 1.

P(X ≤Y )= P(X −Y ≤ 0)=: P(Z ≤ 0) (1)

Z =~aT X =
d∑

j=1
a j X j, with d = 2,a1 = 1,a2 =−1 (2)

We can then identify the distribution of X −Y by expressing the distribution with a charac-
teristic function (not assuming independence).

φZ(t)= E[exp(itZ)]= E[exp(it~aT X )]=φX (t~a) (3)

= exp(it
2∑

j=1
a jµ j − 1

2
t2

2∑
j=1

2∑
k=1

a jakΣ jk) (4)

2= exp(it(µX −µY )− 1
2

t2(Σ11 −Σ12 −Σ21 +Σ22)) (5)

with Σ11 =σ2
X ,Σ22 =σ2

Y ,Σ12 =Σ21 =σXY (6)

⇒ Z = X −Y ∼ N(µX −µY ,σ2
X +σ2

Y −2σXY ) (7)

It follows that

P(X −Y ≤ a) 7= 1
2

1+erf

 a− (µX −µY )√
2(σ2

X +σ2
Y −2σXY )


 (8)

1⇒ P(X ≤Y )= 1
2

1+erf

 −µX +µY√
2(σ2

X +σ2
Y −2σXY )


 (9)

Now we analyse P(X ≤Y ) for interesting cases:
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A.2 Case I: Dominance Relation p

X ≤p Y ⇔µX ≤µY This represents domination relation ≤p, where individuals are ranked accord-
ing to their predicted value.

Let µX +d =µY with d ≥ 0. Then, because the error function is strictly monotonous increasing
(e), we can do the following estimate.

P(X ≤Y )= 1
2

1+erf

 −µX +µX +d√
2(σ2

X +σ2
Y −2σXY )


= 1

2

1+erf

 d√
2(σ2

X +σ2
Y −2σXY )


 (10)

d≥0,e≥ 1
2

(1+erf(0))= 1
2

(11)

It follows that P(iX ≤ f iY |iX ≤p iY )≥ 1
2

A.3 Case II: Dominance Relation u

X ≤u Y ⇔µX +σXΦ
−1 (

1− α
2
)≤µY −σYΦ

−1 (
1− α

2
)

This represents domination relation ≤u, where
individuals are only considered dominated if the confidence intervals do not overlap.

Let

µX +σXΦ
−1

(
1− α

2

)
+d =µY −σYΦ

−1
(
1− α

2

)
(12)

µY =µX +σXΦ
−1

(
1− α

2

)
+σYΦ

−1
(
1− α

2

)
+d (13)

µY =µX +Φ−1
(
1− α

2

)
(σX +σY +d′), with d′ = d

Φ−1
(
1− α

2
) (14)

Therefore:

P(X ≤Y )= 1
2

1+erf

−µX +µX +Φ−1 (
1− α

2
)
(σX +σY +d′)√

2(σ2
X +σ2

Y −2σXY )


 (15)

= 1
2

1+erf

Φ−1 (
1− α

2
)
(σX +σY +d′)√

2(σ2
X +σ2

Y −2σXY )


 (16)

= 1
2

1+erf

Φ−1 (
1− α

2
)

p
2

√√√√ (σX +σY +d′)2

(σ2
X +σ2

Y −2σXY )

 (17)

Further:

Φ−1
(
1− α

2

)
=
p

2erf−1
((

1− α

2

)
−1

)
=
p

2erf−1(1−α) (18)

(σX +σY +d′)2

(σ2
X +σ2

Y −2σXY )
≥ (σX +σY )2

(σ2
X +σ2

Y −2σXY )
≥ 1+ 2σXσY

σ2
x +σ2

y −2σXY
+ 2σXY

σ2
x +σ2

y −2σXY
(19)

Now, without loss of generality, let σY = βσX , with β > 0 ∈ R. β > 0 since both σX ,σY > 0.
Then:

2(σXσY )
σ2

x +σ2
y

= 2βσ2
Y

(1+β2)σ2
Y
= 2β

(1+β2)
and (20)

2β
(1+β2)

∈ [0,1] since β> 0 (21)
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α [0,1] confidence level
ρ {0,0.5,0.75,1} correlation of error distributions
β {0.1,0.6,1.1,1.6,2.1,2.6} relation between uncertainties
d 0 distance between confidence interval α-level bounds
σX 1 uncertainty X
µX 0 prediction X
σY βσX uncertainty Y
µY µX +σXΦ

−1(1− α
2 )+σYΦ

−1(1− α
2 )+d prediction Y

Σ

(
σ2

X ρσXσY
ρσXσY σ2

Y

)
error covariance

Table 1: Parameter settings for experiments

Also:

σXY = ρXYσXσY ≥ 0, since ρXY ∈ [0,1] (22)

σ2
X +σ2

Y −2σXY > 0 (23)

Proof for equation 23:

• Case 1: ρXY = 1.

– σ2
X +σ2

Y −2σXY =σ2
X +σ2

Y −2ρXYσXσY
ρXY=1= (σX −σY )2 ≥ 0

– Case 1a: σX =σY

* ⇒ Z ∼ N(µX ,µY ,0) TODO?

– Case 1a: σX !=σY

* ⇒ (σX −σY )2 > 0

• Case 2: ρXY < 1.

– σ2
X +σ2

Y −2σXY > (σX −σY )2 ≥ 0

Thus, since the error function is strictly monotonous increasing:

P(X ≤Y )≥ 1
2

(
1+erf

(p
2erf−1(1−α)p

2

p
1+0+0

))
(24)

= 1
2

(1+erf(erf−1(1−α)) (25)

= 1− 1
2
α (26)

Let γ = d
Φ−1(1− α

2 )σY
. Figure 1 visualises the lower bound (black) and the upper bound for dif-

ferent γ for the probability P(iX ≤ f iY |iX ≤u iY ) and different confidence levels α in cases of
independent error distributions, i.e. σXY = 0.

We also tested the result empirically. We chose the error distribution parameters of two ran-
dom variables so that ≤u can just distinguish between, i.e. the condition for case II. We set some
parameters for testing purposes and set the others accordingly (see table 1).

We can thus define a binormal distribution N((µX ,µY )T ,Σ) that fulfills the conditions of case
II to simulate the error distributions of two individuals. We then sample from the distribution
1000000 times and record the frequency of simulated ranking errors, i.e. where x > y : (x, y) ∼

5



0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

α

P
(X

≤
Y

)

●

●

●

●

lbound
ubound γ = 0
ubound γ = 1
ubound γ = 2

Figure 1: Probability bounds of P(X ≤ Y ), given a ranking of iX ≤u iY for different confidence
levels α and different gap ratios γ.
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N((µX ,µY )T ,Σ). The results for different settings of α,ρ,β as listed in 1 are visualised in figure
2.
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Figure 2: Empirical frequency of ranking errors for different α (confidence levels), β (relation
between uncertainties) and ρ (correlation between error distributions) as well as the theoretical
lower bound (black).

A.4 Larger Population

We now look at what changes if we increase the population size. Let Ri be the set of individuals
of rank i according to ≤c and r be the highest rank. The ranking is correct iff

∀x ∈ Ri : x ≤ f y∀y ∈ Ri+1, i ∈ {0, . . . , r−1} (27)

The necessary comparisons can be encoded in a similar form as above, i.e. as the difference of
two random variables. Thus, let

Z(i)
k,l = Rk

i −R l
i+1, i ∈ {0, . . . , r−1},k ∈ {1, . . . , |Ri|}, l ∈ {1, . . . , |Ri+1} (28)

, where Rk
i is the kth individual at rank i. Thus, the probability of no ranking errors can be de-

scribed as P(Y (0)
1,1 ≤ 0, ...). In order to express this probability, we can use an affine transformation

7



with y= c+Bx and c =~0 where

x ∼ N(m,Σ),m = ( f̂ (x1), . . . , f̂ (xλ))T ,Σ=
 σ2

1 σ1,2 . . . σ1,λ
. . .
σλ,1 . . . . . . σ2

λ

 (29)

y∼ N(Bm,BΣB−1) (30)

and where B encodes the comparisons, i.e. B contains λ columns and a row for each Z(i)
k,l where

the kth element is 1, the lth −1 and the rest 0. We can thus compute the probability of no ranking
errors (denoted as p in the following) with the cdf of the multivariate normal distribution for y.
We can then define a distribution of the worst-case selection errors with{

0 p
µ 1− p

(31)

. With this very rough estimate we already have an upper bound of the expected value for the
number of selection errors with µ(1− p). In order to make a better estimate, we would also need
to find the probabilities of 1. . .µ sorting or even better selection errors.

B Multi-Fidelity Models

In the following, we look at the progress rate and similar metrics using a Multi-Fidelity Models
Approach in order to express SAPEO. We denote a1, . . . ,aA as the points in search space that
have been sampled previously. Together, they form the archive of size A from which values are
selected to build the local surrogate models for SAPEO. For this analysis, however, we assume a
constant size for the archive. This allows us to express SAPEO as a Markovian process despite
the growing state space in the original algorithm. We further denote d(i)

X as the distance from
individual X to archive point i in search space. εg is the uncertainty that is allowed for the
surrogate model prediction at generation g, which we assume to be constant throughout the
runtime of the algorithm. In practice, ε would decrease with runtime in order to force better
predictions and an approximation of the optimisation target.

SAPEO can be interpreted as a strategy that uses multi-fidelity models:

• The surrogate model (Kriging or Lipschitz) used up to a specific uncertainty ε of the predic-
tion and certainty of selection decisions

• The actual fitness evaluation function

B.1 Approach 1a: Exact model Lipschitz model with archive size 1

Now let us first assume an archive size of A = 1, so let d(1)
X = dX be the distance from individual

X to the only point in the archive. In the Lipschitz model, the bounds of the confidence interval
with only one sample are f (a1)

[−LdXΦ
−1 (

1− α
2
)
,LdXΦ

−1 (
1− α

2
)]

with some constant L > 0 ∈ R.
This analysis would be very similar for a Kriging Model since only the confidence interval bounds
are relevant here.

In SAPEO, an individual is evaluated if either its prediction uncertainty is larger than the
uncertainty threshold ε or (for some strategies) if it cannot be compared to other individuals. We
look at the first case in the following. Thus, the probability of evaluation is:

Pε = P
(
LdXΦ

−1
(
1− α

2

)
≤ ε

)
= P

(
dX ≤ ε

LΦ−1
(
1− α

2
))

(32)
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Now let X be the child of Y . Since child X is generated from parent Y with a mutation with

X =Y +σmutZ, Zi ∼ N(0,1) (33)

, it holds that X i is an independent, normally distributed random variable with mean Yi and
variance σ2

mut. Therefore, the test statistic

T =
√√√√ N∑

i=1
(
xi

σ
)2 = 1

σ

√√√√ N∑
i=1

x2
i =

dX

σ
(34)

is distributed according to a noncentral chi-distribution with

λ=
√√√√ N∑

i=1
(
yi

σ
)2 = 1

σ

√√√√ N∑
i=1

y2
i =

dY

σ
(35)

. Therefore:

f
(

dX

σmut
| dY ,σmut

)
=

exp
(−(d2

X+d2
Y )

2σ2
mut

)(
dX
σmut

)N (
dY
σmut

)
(

dX dY
σ2

mut

) N
2

I N
2 −1

(
dX dY

σ2
mut

)
(36)

= exp

(−(d2
X +d2

Y )

2σ2
mut

)
d

N
2
X d

− N
2 +1

Y σ−1
mutI N

2 −1

(
dX dY

σ2
mut

)
(37)

I N
2 −1(x)= 1

π

∫ π

0
cos

((
N
2

−1
)
τ− xsin(τ)

)
dτ (38)

For the two-dimensional case, T also follows a Rician distribution with the same λ, a special case
of the noncentral chi distribution.

Let furthermore P(X ≤c Y ) be the probability that X and Y can be distinguished and that
X ≤c Y according to the dominance relation. The following transitions all happen when X ≤c Y

P(dY → 0)= f (0|dY ,σmut)Pε+ (1−Pε) (39)

P(dY → dX )= 0 for dX > ε

LΦ−1(1− α
2 )

(40)

P(dY → dX )= f (dX |dY ,σmut)Pεelse (41)

The dX equals 0 if child X is evaluated because of the threshold or the mutation lands on the
archive point by chance. dX is also limited by ε, which explains the second line. In other cases,
dX follows a noncentral chi distribution as described above.

In the remaining situations where X ||cY it holds that dY → 0, if we assume for simplicity that
both X and Y have to be evaluated. Furthermore, if Y ≤c X , it holds that dY → dY .

However, P(X ||cY )= 1 for archive size = 1, since:

P(X ≤c Y )= P
(
f (a1)+LdXΦ

−1
(
1− α

2

)
≤ f (a1)−LdYΦ−1

(
1− α

2

))
(42)

= P
(
LΦ−1

(
1− α

2

)
(dX +dY )≤ 0

)
(43)

The latter condition can only be true if dX = dY = 0, since the remaining variables are positive
and larger than 0. However, this would mean that, X , Y and the archive point a1 are all the
same and it also holds that X ||cY and Y ≤c X . We have thus shown that an analysis with just
a single point in the archive is not helpful, since no pair of individuals would be distinguishable
according to ≤c.
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B.2 Approach 1b: Exact model Lipschitz model with arbitrary archive size

We therefore set A = k,k ∈N instead. Then each distance d(i)
X , i ∈ 1, . . . ,k is distributed as dX in

the previous section. We can then formulate the probability of distinguishability:

P(X ≤c Y )= P
(
min

i

(
f (ai)+Ld(i)

X Φ
−1

(
1− α

2

))
≤max

i

(
f (ai)−Ld(i)

Y Φ
−1

(
1− α

2

)))
(44)

= P
(
min

i

(
f (ai)+Ld(i)

X Φ
−1

(
1− α

2

))
≤−min

i

(
− f (ai)+Ld(i)

Y Φ
−1

(
1− α

2

)))
(45)

= P
(
min

i, j

(
f (ai)− f (a j)+LΦ−1

(
1− α

2

)
(d(i)

X +d( j)
Y )

)
≤ 0

)
(46)

In cases where i = j, it holds that

min
i, j

(
f (ai)− f (a j)+LΦ−1

(
1− α

2

)
(d(i)

X +d( j)
Y )

)
= LΦ−1

(
1− α

2

)
(d(i)

X +d( j)
Y ) (47)

, which results in the same problem as with the single archive point in the previous section.
However, while this is an exact expression, it is difficult to simplify further. We therefore take
another approach in the following section.

B.3 Approach 2a: Assuming constant uncertainty

In this approach, we simplify the above analysis by assuming that the uncertainty is constant
everywhere. In SAPEO, the uncertainty can not be larger than the threshold ε. This is why this
approach is valid and describes a lower bound of the metrics discussed in the following. However,
what is ignored here is that some individuals have to be evaluated to enforce this uncertainty
limit. This will be discussed in the following section approach 2b. We can now compute certain
probabilities.

B.3.1 Probability of acceptance

TODO: capitals for random variables We derive the probability of acceptance depending on the
distance to the target of the child R̃ and the parent R, denoted as Pa(R̃,R). Due to the uncertainty
dominance relation ≥c, a child x with parent y is accepted if

f̂ (x)+ε≤ f̂ (y)−ε (48)

If we assume that the Kriging model has predicted the correct error distributions, we also know
that for any individual i it holds that

f̂ (i)−ε≤ f (i)≤ f̂ (i)+ε (49)

with a probability of at least 1−α, i.e. if the correct value lies within the confidence bounds. In
the following, we assume that the actual value of the individual always does lie in these bounds.

Then we know that

P ( f (x)+2ε≤ f (y)−2ε)≤ P
(
f̂ (x)+ε≤ f̂ (y)−ε)≤ P ( f (x)≤ f (y)) (50)

For the sphere function, it also holds that for any individual i f (i) = α
N∑

j=1
(i j −γ j)2 +β,α,β ∈

R,γ ∈ RN . Since from now on we will express the individuals only in terms of their relative dis-
tance from the target, we set γ= (0)N w.l.o.g.. In the following, we also set α= 1,β= 0. Therefore,
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we now know the distance of any individual i to the target Ri to be Ri =
√

N∑
j=1

i2
j =

√
f (i). Thus:

P(R̃2 +2ε≤ R2 −2ε)≤ Pa(R̃,R)≤ P(R̃2 ≤ R2) (51)

P
(

R̃2

σ2 ≤ R2 −4ε
σ2

)
≤ R2 −2ε)≤ Pa(R̃,R)≤ P

(
R̃2

σ2 ≤ R2

σ2

)
(52)

Since child x is generated from parent y with a mutation with

x = y+σz, zi ∼ N(0,1) (53)

, it holds that xi is a independent, normally distributed random variable with mean yi and vari-
ance σ2. Given that γ= (0)T we then now that the test statistic

T =
√√√√ N∑

i=1

( xi

σ

)2 = 1
σ

√√√√ N∑
i=1

x2
i =

R̃
σ

(54)

is distributed according to a noncentral chi-distribution with

λ=
√√√√ N∑

i=1

( yi

σ

)2 = 1
σ

√√√√ N∑
i=1

y2
i =

R
σ

(55)

. Similarly, we also know that the test statistic

T =
N∑

i=1

( xi

σ

)2 = 1
σ2

N∑
i=1

x2
i =

R̃2

σ2 = f (R̃)
σ2 (56)

is distributed according to a noncentral chi-squared distribution with

λ=
N∑

i=1

( yi

σ

)2 = 1
σ2

N∑
i=1

y2
i =

R2

σ2 = f (R)
σ2 (57)

.

With the definition of the CDF of the noncentral chi-squared distribution we therefore have
for the probability of acceptance

1−Q N
2

√
R2

σ2 ,

√
R2 −4ε
σ2

= 1−Q N
2

(
R
σ

,

p
R2 −4ε
σ

)
(58)

≤ Pa(R̃,R) (59)

≤ 1−Q N
2

√
R2

σ2 ,

√
R2

σ2

= 1−Q N
2

(
R
σ

,
R
σ

)
(60)

, with for M ∈Z

QM(a,b)= exp
(
−a2 +b2

2

) ∞∑
k=1−M

(a
b

)k
Ik(ab) (61)

Ik(x)=
∞∑

r=0

( x
2
)2r+k

Γ(r+k+1)r!
(62)

with Marcum-Q function Q(a,b) and modified Bessel function Ik of order k of the first kind.

TODO: M not in Z (uneven N)
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B.3.2 Probability of rejection

Similarly to the above, we reject a child x from parent y outright if

f̂ (x)−ε≥ f̂ (y)+ε (63)

and

P( f (x)−2ε≥ f (y)+2ε)≤ P( f̂ (x)−ε≥ f̂ (y)+ε)≤ P( f (x)≥ f (y)) (64)

P
(

R̃2

σ2 ≥ R2 +4ε
σ2

)
≤ Pr(R̃,R)≤ P

(
R̃2

σ2 ≥ R2

σ2

)
(65)

1−P
(

R̃2

σ2 ≤ R2 +4ε
σ2

)
≤ Pr(R̃,R)≤ 1−P

(
R̃2

σ2 ≤ R2

σ2

)
(66)

Q N
2

(
R
σ

,

p
R2 +4ε
σ

)
≤ Pr(R̃,R)≤Q N

2

(
R
σ

,
R
σ

)
(67)

B.3.3 Probability of evaluation

Since in this subsection, we assume a constant uncertainty, the probability of evaluation is equal
to the probability of noncomparability. The probability that two individuals are not comparable
according to ≤c (||c), denoted as Pe(R̃,R) is equal to 1−Pa(R̃,R)−Pr(R̃,R). Therefore, we have

1−
(
1−Q N

2

(
R
σ

,
R
σ

))
−Q N

2

(
R
σ

,
R
σ

)
= 0 (68)

≤ Pe(R̃,R) (69)

≤ 1−
1−Q N

2

R
σ

,

√
R2 −4ε
σ2

−Q N
2

(
R
σ

,

p
R2 +4ε
σ

)
(70)

=Q N
2

R
σ

,

√
R2 −4ε
σ2

−Q N
2

(
R
σ

,

p
R2 +4ε
σ

)
(71)

B.4 Empirical validation

In an experiment very similar to the previous one, we verified the obtained theoretical results as
depicted in figures 3 and 4.
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Figure 3: Acceptance, rejection, incomparability and progress rate (blue) for σ = 1, N = 2,ε = 0.5
and 105 experiments per datapoint. The red and green lines represent the discovered theoretical
upper and lower bounds, respectively.
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Figure 4: Acceptance, rejection, incomparability and progress rate (blue) for σ = 1, N = 5,ε = 0.5
and 105 experiments per datapoint. The red and green lines represent the discovered theoret-
ical upper and lower bounds, respectively. The yellow and orange line are first estimates of the
progress rate.
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