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Dr. Ernestas Filatovas (Vilnius University) visited the research group “High-Performance Computing – 
Algorithms” (Almeria university) from January 16th to February 1st. The goal of the STSM visit was to 
improve theoretical basis and applicability for practical problems of the preference-based evolutionary 
algorithm for solving multi-objective optimization problems. Moreover, one of the main objectives of this 
STSM was to strengthen the collaboration between Institute of Mathematics and Informatics of Vilnius 
University and the research group “High-Performance Computing – Algorithms” from University of Almeria.  

During the STSM visit, I have spent two and a half weeks under the supervision of professor Gracia 

Ester Martín Garzón. The main research lines of this group are High-Performance Computing, Global, and 

Multi-objective optimization, Systems Modelling and Resolution, Energy Efficient Computing. 

 

Many real-world problems are multi-objective, where several conflicting objective functions must be 
minimized. Usually, there is no solution which would be the best for all objectives, however, a set of 
optimal solutions in a multi-objective sense exists. These solutions are defined as the solutions where none 
of the objective values can be improved without deteriorating other(s). Such a set of solutions is called the 
Pareto set and the corresponding set of objective vectors, the Pareto front. Determination of the Pareto 
front is the main goal of multi-objective optimization, however, often it is impossible to identify the exact 
Pareto front due to the reasons as continuity of the front or complexity of the problem being solved. 
Therefore, algorithms that approximate the Pareto front are widely-used. Evolutionary Multi-objective 
Optimization (EMO) approaches are commonly employed for this task [1, 2]. 

The set of obtained solutions approximating the entire Pareto front is presented to the Decision Maker 
(DM). However, EMO algorithms are computationally expensive and time-consuming. Additionally, only a 
reasonable number of solutions should be given to the DM so that he/she can make an adequate decision 
avoiding the usually complex analysis of a large amount of information and reducing cognitive burden. 
Moreover, the DM is commonly interested only in a certain part of the Pareto front and prefers to explore 
that part deeper. Thus, incorporation of DM’s preferences into EMO algorithms has become a relevant 
trend during the last decade [3-7]. 

The DM’s preference information is usually expressed as a Reference Point (RP), as it is the simplest 
way to specify the preferences. Therefore, a preference-based EMO algorithm, during its execution, 
emphasizes solutions close to the RP. In particular, the region of interest (ROI) is a part of the Pareto front 
determined by the RP provided by the DM (see Fig. 1). During exploration process, the DM provides several 
different RPs, therefore, it is important to ensure that the obtained solutions by a preference-based EMO 
algorithm are in the ranges, defined by the RP and meanwhile cover the whole ROI. However, only a few 
preference-based EMO approaches are able to obtain well-distributed solutions covering the complete ROI 
– RD-NSGA-II [4], WASF-GA [7] algorithms. Other popular developed algorithms as R-NSGA-II [3], r-NSGA-II 
[6], etc. require tuning of the parameters to obtain solutions only in the ROI and to cover it well. These 
parameters must be set for each problem and for each reference point, independently, that is complicated 
when solving real-world MOO problems. RD-NSGA-II, WASF-GA approaches use values of an achievement 
scalarizing function (ASF) to classify the individuals at each generation into several fronts. However, only 
WASFGA is able to cover the whole ROI for problems with 3 or more objectives. This algorithm currently is 
the best known for approximation the region of interest of the Pareto front. Though, it requires minimizing 

mailto:Ernestas.filatovas@mif.vu.lt


ASF on each iteration. Moreover, our primary experimental investigation [1] has shown that WASFGA 
demands rather many iterations to get good enough approximation. This disadvantage is crucial when 
solving optimization problems with a high computational burden.  

 
Fig. 1 Region of interest 

 
Recently, together with research group “High-Performance Computing – Algorithms”, we have 

developed an initial version of the preference-based EMO algorithm that considers the DM’s preference 
information expressed by means of RPs and approximates ROI [8]. The algorithm was experimentally 
investigated on several test problems. The obtained results were promising and showed potential for the 
further development and application of the algorithm. During the STSM visitwe focused on the 
improvement of the algorithm, experimental investigation as well as its application.  

At the beginning of my mission together with prof. dr. Gracia Ester Martín Garzón, Dr. Juana López 
Redondo, Dr. Gloria Ortega, and Dr. José Fernández Hernández we have discussed the currents state of our 
common researches, as well as, lines of our further collaboration, and also composed a detailed work plan 
of the pre-experimental and experimental investigations to be carry out during and after the STSM.  

We started from improvement and extension of the theoretical background of our developed 
algorithm called CHIM-NSGA. The algorithm combines ideas of the well-known EMO algorithm NSGA-II [9] 
and the NBI method [10]. NBI is based on the concept of Convex Hull of Individual Minima (CHIM) – the set 
of all convex combinations of the individual global minima of the objective functions. In a two-objective 
case, the CHIM is a line segment (see Fig. 2). The NBI method combines all the objective functions into a 
single objective one via a weighting vector and finds optimal solutions by minimizing the single objective for 
various values of weighting vector. As a result, NBI method finds a uniformly spread set of Pareto optimal 
objective vectors. Thus, we incorporated CHIM-based selection into a preference-based EMO algorithm in 
order to achieve a good distribution of the obtained solutions in the ROI. 
 

 
 

Fig. 2 The CHIM of the region of interest 
 



As we deal with a preference-based approach, before running the proposed CHIM-NSGA algorithm, 
the DM's preferences should be provided by means of an RP. Then the boundary points (see Fig. 2) of the 
region of interest are obtained by a suitable single-objective optimization algorithm. This ensures that the 
appropriate region of interest is approximated.  

The steps of the CHIM-NSGA algorithm are as follows: 
1. A random initial population P0 consisting of N decision vectors is randomly generated. 
2. At iteration t, a new offspring population Q is created by applying genetic operators (crossover 

and mutation) to the individuals of the parent population. 
3. The parent and offspring populations are combined into one joint population Pt. 
4. The new population is sorted into different non-domination levels (so-called fronts) by a non-

dominated sorting procedure (as in NSGA-II algorithm). 
5. The obtained joint population is reduced to the size N of the parent population by leaving the 

individuals from the best non-domination levels. If not all individuals from the last level can be 
selected for the next generation, then CHIM line points are generated and the individuals 
closest to those points are selected. The CHIM line points are evenly distributed between the 
boundary points (see Fig. 2). The number of points on the CHIM line is equal to the number of 
points to be selected for the new population from the last non-dominated level that cannot be 
completely selected. 

6. If the termination condition is not satisfied, then the process is repeated from Step 2 
considering the reduced population as the parent population in the next iteration. 

 
The next stage of STSM visit was the experimental investigation. The performance of the CHIM-NSGA 

algorithm is experimentally researched and compared to the state-of-the-art WASF-GA and R-NSGA-II 
algorithms. A set of well-known test problems has been considered: it includes the bi-objective problems 
ZDT1-ZDT4, ZDT6, and the tri-objective problems DTLZ1-DTLZ6 [11]. Each experiment has been performed 
for 30 independent runs using different initial populations and average results have been evaluated. We 
selected a population size of 100 individuals and 200 generations for the problems with two objectives, and 
a population size of 200 individuals and 400 generations for the three-objective problems, as such 
population sizes are enough to sufficiently represent an approximation of a region of the Pareto front. We 
selected a relatively small number of generations in order to find a good enough approximation in 
reasonable computational time. The performance of the PMOEAs has been evaluated using the following 
metrics: Generational Distance (GD) [1] for estimating convergence to the true Pareto front, Spread [1] for 
estimating the distribution evenness of the solutions. PR metric [12] is also considered – it evaluates the 
percentage of solutions that lie into the DM's region of interest. Preference information provided by the 
DM that is expressed as an RP is required for the evaluated algorithms. The used RPs and the number of 
objectives and variables for each test problem considered are presented in Table 1. The mean values of PR 
for all performed runs with each test problem are presented in Table 2. It can be seen in Table 3 that all the 
solutions obtained by CHIM-NSGA enter into the ROI for all the test problems except DTLZ3 (the most 
complex one). This means that the fixed sizes of populations and generations are enough to find a crowded 
set of solutions when running the algorithm. Thus, WASF-GA is not able to obtain all the solutions into the 
ROI within the fixed number of generations. 

The mean values of Generational Distance and Spread metrics and their confidence intervals (95% 
confidence level) for each test problem are presented in Tables 3-4, respectively. The best (lowest) average 
values of the calculated metrics are marked in bold. According to the GD metric, the proposed CHIM-NSGA 
algorithm approximates the ROI better than the R-NSGA-II and WASF-GA algorithms for all the analyzed 
problems except in the ZDT6 and DTLZ3 cases (see Table 3). Notice, however, that in those cases the 
confidence interval of the best algorithm overlaps with that of CHIM-NSGA. The values of Spread metric 
show that although the solutions obtained by the WASF-GA algorithm are distributed more evenly in most 
cases, their corresponding confidence intervals usually also overlap with those of CHIM-NSGA (Table 4). 



Table 1. Test problems and reference points used in the evaluated algorithms 

  

Problem Number of 
objectives 

Number of 
variables 

Reference point 

ZDT1 2 30 (0.80, 0.60) 

ZDT2 2 30 (0.80, 0.80) 

ZDT3 2 30 (0.30, 0.80) 

ZDT4 2 10 (0.80, 0.60) 

ZDT6 2 10 (0.78, 0.61) 

DTLZ1 3 7 (0.20, 0.20, 0.20) 

DTLZ2 3 12 (0.60, 0.70, 0.70) 

DTLZ3 3 12 (0.60, 0.70, 0.70) 

DTLZ4 3 12 (0.60, 0.70, 0.70) 

DTLZ5 3 12 (0.60, 0.70, 0.80) 

DTLZ6 3 12 (0.60, 0.70, 0.80) 

 
 

Table 2. Mean of PR metric 

Problem CHIM-NSGA WASF-GA 

ZDT1 100.00 100.00 

ZDT2 100.00 99.00 

ZDT3 100.00 100.00 

ZDT4 100.00 62.70 

ZDT6 100.00 99.00 

DTLZ1 100.00 99.67 

DTLZ2 100.00 92.18 

DTLZ3 90.00 92.13 

DTLZ4 100.00 88.93 

DTLZ5 100.00 91.50 

DTLZ6 100.00 91.50 
 

 
Table 3. Mean and confidence intervals of Generational Distance metric 

 

Problem CHIM-NSGA WASF-GA R-NSGA-II 

ZDT1 3.52E-04 ±8.46E-05 1.39E-03  ±9.95E-05 1.43E-03  ±8.71E-04 

ZDT3 4.87E-04 ±9.79E-05 1.66E-03  ±1.95E-04 1.29E-03  ±8.95E-04 

ZDT3 1.76E-04 ±7.44E-05 7.36E-04  ±6.33E-05 1.27E-03  ±6.76E-04 

ZDT4 3.03E-04 ±7.72E-05 2.74E-01  ±3.84E-02 1.01E-03  ±7.11E-04 

ZDT6 3.20E-04  ±7.58E-05 1.35E-02  ±9.01E-04 3.09E-04 ±5.91E-05 

DTLZ1 1.19E-03 ±1.43E-04 5.64E-03  ±6.08E-05 4.30E-03  ±1.79E-03 

DTLZ2 2.43E-03 ±4.20E-04 2.95E-03  ±9.31E-05 2.57E-03  ±4.16E-04 

DTLZ3 5.42E-03  ±1.03E-03 4.92E-03 ±6.54E-04 3.29E-02  ±6.65E-03 

DTLZ4 2.32E-03 ±2.16E-04 2.96E-03  ±9.22E-05 2.58E-03  ±4.12E-04 

DTLZ5 5.43E-04 ±1.23E-04 7.66E-04  ±8.34E-06 1.05E-03  ±8.18E-04 

DTLZ6 3.72E-04 ±0.00E+00 4.10E-03  ±0.00E+00 4.84E-04  ±0.00E+00 

 



 Table 4. Mean and confidence intervals of Spread metric 

 

Problem CHIM-NSGA WASF-GA R-NSGA-II 

ZDT1 5.86E-03 ±1.33E-03 9.11E-03  ±6.50E-04 8.67E-03  ±3.20E-03 
ZDT2 5.19E-03  ±1.27E-03 3.10E-03 ±9.70E-04 1.52E-02  ±7.79E-03 
ZDT3 8.80E-03  ±1.02E-03 9.65E-03  ±1.71E-04 6.79E-03 ±2.39E-03 
ZDT4 4.17E-03  ±1.33E-03 3.36E-03 ±7.27E-04 9.12E-03  ±4.26E-03 
ZDT6 7.69E-03 ±8.57E-04 8.68E-03  ±3.10E-03 1.38E-02  ±6.50E-03 
DTLZ1 2.44E-03  ±4.54E-04 2.09E-04 ±5.36E-05 7.78E-02  ±1.97E-02 
DTLZ2 3.02E-03  ±6.08E-04 5.80E-04 ±6.63E-05 9.86E-03  ±2.84E-03 
DTLZ3 4.74E-03  ±1.01E-03 5.18E-04 ±1.53E-04 2.43E-02  ±6.50E-03 
DTLZ4 3.61E-03  ±7.25E-04 6.21E-04 ±6.07E-05 1.16E-02  ±4.12E-03 
DTLZ5 3.97E-03  ±7.79E-04 5.94E-04 ±5.00E-05 2.13E-02  ±1.23E-02 
DTLZ6 5.00E-03  ±0.00E+00 9.14E-04 ±0.00E+00 9.86E-03  ±0.00E+00 

 

 
Concluding, the experimental investigation shows that all the solutions provided by CHIM-NSGA lie 

into the ROI for all but one problem. WASF-GA shows worse results with regard to the PR metric: in most 
cases, there are solutions obtained by WASF-GA outside the ROI. According to the Generational Distance 
metric, the CHIM-NSGA algorithm approximates the Pareto front better than the other two investigated 
algorithms. It should be noted that the proposed CHIM-NSGA is able to cope with the problem of 
approximating the whole ROI accurately while maintaining the sufficiently good distribution of the obtained 
solutions using a relatively small number of generations, i.e. in reasonable computational time. This 
property is especially important when optimizing many objective problems. 

 
As a rule, EMO algorithms are iterative and each iteration consists of several stages: evaluation of 

objective functions, Pareto dominance ranking, genetic operations, memory allocation and management, 
and other computations. The most computationally expensive part of such approaches is the dominance 
ranking operators. One of the most widely used procedures is the fast non-dominated sorting (FNDS) [9], 
which is used in the state-of-the-art EMO algorithm NSGA-II and its extensions. As proved in [13], FNDS 
consumes most of the computational burden of the EMO algorithms. The usage of HPC techniques allows 
us to speedup this procedure (while whole EMO algorithm) significantly. During the STSM visit our 
previously developed parallel versions of FNDS [14-15] were incorporated into the CHIM-NSGA algorithm. 

During the STSM the works on the application of the CHIM-NSGA for solving the different scale multi-
objective facility location problems has been started also. Moreover, the results archived during the STSM 
visit were presented and discussed with the members of the “High-Performance Computing – Algorithms” 
group. 

Finally, during my STSM we have submitted a research paper called “A reference point-based 

evolutionary algorithm for approximating regions of interest in multiobjective problems” to the Journal of 

Global Optimization (IF2015: 1.219). It is also planned to present new results at the Optimization 2017, 

IFORS 2017 and to prepare a research paper where the application of the developed CHIM-NSGA algorithm 

to multi-objective facility location problems will be investigated.  

This research of the STSM is enclosed into the Working Groups WG1: "WG Theory-Driven Applications" 

and WG2: "WG Practice-Driven Theory" of the COST Action ImAppNIO CA15140. A goal of the proposed 

STSM action corresponds to the ImAppNIO focus on improvement of the applicability of nature-inspired 

optimization methods. 

  

http://optimization2017.fc.ul.pt/
http://ifors2017.ca/
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